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Abstract. We have studied the dynamic response of Pb thin films with a square array of antidots by means
of ac susceptibility χ(T, H) measurements. At low enough ac drive amplitudes h, vortices moving inside the
pinning potential give rise to a frequency- and h-independent response together with a scarce dissipation.
For higher amplitudes, the average distance travelled by vortices surpasses the pinning range and a critical
state develops. We found that the boundary h∗(H,T ) between these regimes smoothly decreases as T
increases whereas a step-like behavior is observed as a function of field. We demonstrate that these steps
in h∗(H) arise from sharp changes in the pinning strength corresponding to different vortex configurations.
For a wide set of data at several fields and temperatures in the critical state regime, we show that the
scaling laws based on the simple Bean model are satisfied.

PACS. 74.78.Na Mesoscopic and nanoscale systems – 74.25.Sv Critical currents – 74.78.Db Low-Tc films

1 Introduction

AC susceptibility χ = χ′ + iχ′′ measurements are a pow-
erful tool widely used for investigating the vortex dynam-
ics in the mixed state of Type-II superconductors. From
the experimental point of view, this inductive technique
has the advantage of being inexpensive, highly sensitive,
and very simple. On top of that, it allows one to access
and probe different vortex regimes and phases by chang-
ing either the “sensing parameters”, like frequency f , am-
plitude h and wave shape of the alternating excitation, or
the thermodynamic variables like the external field H and
temperature T . For example, in the vortex solid phase,
small values of the external excitation h induce an oscilla-
tory motion of the flux lines inside the pinning potential
characterized by a very small dissipation and a response χ
independent of h [1]. In this so-called Campbell regime, it
is possible to determine the average curvature of the pin-
ning potential α assuming a parabolic potential well [2,3].

At higher amplitudes h, the vortex displacement ap-
proaches the pinning range and the pinning potential de-
parts from the harmonic approximation. At this stage, a
nonlinear response is observed and the screening χ′ be-
comes h- and f -dependent. Eventually, at high enough
amplitudes, the average distance travelled by vortices
may surpass the distance between nearby pinning centers
(inter-valley motion) and a critical state (CS) develops [3].

Unlike the Campbell regime, where the vortex config-
uration is preserved after measuring, in the critical state
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regime the initial vortex configuration may be strongly
altered during the measurement process. However, it is
precisely this invasive character of the measurements in
the CS which allows one to determine the critical cur-
rent density J (i.e. the depth of the potential well), thus
providing complementary information to that obtained in
the Campbell regime (i.e. the curvature of the pinning
potential).

Typically the transition between the Campbell and the
critical state regimes is broadened by topological and ener-
getic disorder. These effects can be substantially reduced
by introducing a regular array of pinning centers. In a re-
cent work [2] we have shown that this reduction of disorder
leads, within the Campbell regime, to well defined tran-
sitions in the ac response at the commensurability fields
H = Hn = nΦ0/d2, where Φ0 is the superconducting flux
quantum and d is the period of the square pinning lattice.

It is generally thought that the vortex distribution in
this kind of samples consists of terraces of homogeneous
vortex distribution connected by narrow walls where the
vortex density changes abruptly [4]. Within this picture,
the applicability of standard critical state models with
smooth field profiles is highly questionable, and even more
doubtful is the validity of the simple Bean critical state
model commonly used to extract the critical current from
magnetization measurements. However, the lack of any
corroborative evidence of such terraced critical state pro-
file in samples with periodic pinning stimulates further
experimental studies to gain insight into this rather unex-
plored topic.
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In this work we study the ac dynamic response of Pb
thin films with a square pinning array of holes. We deter-
mine the crossover field from linear to nonlinear regimes
as a function of temperature and field. We found that this
boundary smoothly decreases with increasing temperature
and exhibits a step-like field dependence with clear jumps
at every matching field. For large amplitudes, in the criti-
cal state regime, the scaling relations derived from a sim-
ple Bean model are accurately satisfied for a large range
of fields and temperatures. This analysis allows us to esti-
mate quantitatively the temperature and field dependence
of the critical current density as well as to determine the
onset of the critical state regime.

2 Experimental details

The experiments were conducted on two Pb thin films
with a square antidot array of period d = 1.5 µm, which
corresponds to a first matching field H1 = 9.2 G. The an-
tidots have a square shape with a size b = 0.8 µm. The
name, critical temperature and thickness δ of the used
samples are, AD15 (δ = 13.5 nm, Tc = 7.1 K) and AD65
(δ = 65 nm, Tc = 7.21 K), respectively. From the Tc(H)
slope we have estimated, for both samples, a supercon-
ducting coherence length ξ(0) ∼ 33 ± 1 nm.

The predefined resist-dot patterns were prepared by
electron-beam lithography in a polymethyl metacry-
late/methyl metacrylate (PMMA/MMA) resist bilayer
covering the SiO2 substrate. The use of two different re-
sist layers is necessary to obtain an overhang profile which
eventually guarantee that there will be no contact between
the material deposited on the substrate and the resist
layer. A Ge(20 Å)/Pb/Ge(200 Å) film was then electron-
beam evaporated onto this mask while keeping the sub-
strate at liquid nitrogen temperature. Finally, the resist
was removed in a liftoff procedure in warm acetone.

The ac-measurements were carried out in a commer-
cial Quantum Design-PPMS device with drive field ampli-
tudes h ranging from 2 mOe to 10 Oe, and the frequency f
from 10 Hz to 15 kHz. In this window of frequencies we
have found that χ is weakly dependent on f and therefore
we report results obtained at a single value f = 3837 Hz.
In all cases, the data were normalized by the same factor
corresponding to a total step ∆χ′ = 1 with H =0.

3 Boundary of the linear regime

In order to identify the different dynamic regimes, we car-
ried out a series of measurements of χ = χ′ + iχ′′ as a
function of the ac excitation h for several temperatures
at fixed dc field H . Some of these measurements for the
sample AD15 at H =5 Oe, are shown in Figure 1. These
curves clearly indicate the existence of a Campbell regime
at low h values, characterized by a susceptibility indepen-
dent of h (see dashed lines in the figure) and χ′′ ∼ 0. At
higher amplitudes, the dissipation departs from zero and
a crossover to an amplitude-dependent nonlinear regime
takes place (see black arrows in this figure).

Fig. 1. Ac-susceptibility χ = χ′ + iχ′′ as a function of the
drive field h for several temperatures at H = 5 G. Horizontal
dashed lines indicate the range of the linear response and the
arrows the onset of the nonlinear regime.

Fig. 2. Main panel: dynamic h-T phase diagram at H = 5 G.
The h∗(T ) curve represents the onset of the nonlinear response
and hcs(T ) indicates the beginning of the critical state regime.
Inset: dynamic diagram in the h-H plain at fixed temperature.
The lines are guides to the eye.

We use the criterion χ′′ = 0.01 as a reliable estimation
of the onset of the nonlinear regime. Performing this anal-
ysis for different temperatures and dc fields we determine
the boundary h∗(T, H) between the Campbell and the
nonlinear regime. The obtained h∗(t = T/Tc) for H = 5 G,
is shown in the main panel of Figure 2 as open symbols.

For drive fields h < h∗, the pinning potential can
be approximated by a parabolic well and the ac-response
arises from vortices performing small intra-valley oscilla-
tions inside their pinning site. For h � h∗, the average
vortex displacement approaches the pinning range where
the harmonic approximation breaks down and a nonlin-
ear response is detected. Eventually, at higher amplitudes,
vortices are able to hop out the potential well and a critical
state develops.
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Since the limits of the linear regime are given mainly
by the strength of the pinning centers, it is expected that
the extension of this regime decreases as temperature in-
creases, in agreement with the observed behavior. Inter-
estingly, in these patterned samples, we are able to sub-
stantially change the nature of the pinning potential, and
thus its strength, by simply changing the external mag-
netic field. Indeed, for fields H < H1 the density of pin-
ning centers is larger than the density of vortices and each
flux line is strongly pinned by an antidot. For H > H1 ex-
tra vortices could still be attracted by the antidots if the
maximum number of flux lines that an antidot can hold
ns > 1. In this case, since multiquanta vortices are weaker
pinned than a single vortex, a reduction in the extension
of the linear regime is expected at each matching field. For
fields H > nsH1 the incoming vortices will sit in intersti-
tial positions caged by the repulsive interaction of their
strong pinned neighbors. This family of vortices, much
weaker pinned and with higher mobility [5], will domi-
nate the ac-response and a more dramatic reduction of h∗
should occur.

This picture is consistent with the behavior of h∗(H)
shown in the inset of Figure 2 at T = 7 K (t = 0.985). In
this figure we observe that for 0 < H < H1, the h∗ data
scatter around 21 mG (indicated by a straight line in the
figure) whereas for H1 < H < H2 the average value drops
to 18 mG. In both field ranges, the data points exhibit
a similar dispersion showing small peaks near H1/2 and
3H1/2, where the interstitial flux line lattice form a highly
stable configuration. The small step in h∗(H) at H1 indi-
cates the transition from single quantum pinning to dou-
ble quanta pinning. At H = H2, h∗ undergoes a stronger
reduction down to 12 mG, followed by a different field evo-
lution as H increases. This more pronounced jump in h∗
suggests that for H > H2, a further increase of the occupa-
tion number per hole is no longer energetically convenient
and hence, incoming vortices will locate in interstitial sites
(i.e. ns = 2).

A first theoretical estimation of the maximum num-
ber ns of vortices trapped in a cylindrical cavity was done
more than 30 years ago by Mkrtchyan and Schmidt [6].
According to this calculation, ns ≈ b/4ξ(T ). In our partic-
ular case, this gives ns ∼ 1. Although this value is smaller
than the experimentally determined above, it is important
to note that this model underestimates the real ns since
it considers a single vortex line interacting with a cylin-
drical insulating defect with radius b � λ. Clearly, this
hypothesis is not fulfilled in our system where b � 2λ(T ).
Additionally, it is also expected that ns increases as the
applied dc field is increased [7–9]. An extension of the orig-
inal work of Mkrtchyan and Schmidt to arbitrary large
cavity radius has been recently done by Nordborg and
Vinokur [10] using the London approximation. Similar re-
sults were found by Buzdin [9] using the method of image
vortices. This author showed that in a triangular vortex
lattice, a two-quanta vortex becomes energetically favor-
able for temperatures such that b3 < ξ(T )λ(T )2, a con-
dition that, in our sample, is satisfied at t < 0.995, in
agreement with the experimental result.

Fig. 3. Screening χ′ as a function of the Bean penetration
depth Λ obtained by scaling the curves χ′(h) showed in Fig-
ure 1. The upper inset shows the critical current as a function
of temperature obtained from different methods for a plain film
and a patterned film at H = 5 G. The lower inset shows the
efficiency ε(T ) = J(antidots)/J(plainfilm).

4 Critical state regime

As we pointed out above, for h > h∗, the vortex motion
is no longer restricted to local oscillations around the pin-
ning centers and vortex excursions may be larger than the
distance between nearby pinning sites. The ac response in
this case can be described within a critical state model. In
the simplest scenario of a Bean model, the persistent cur-
rent density J is uniform and close to the critical value Jc,
everywhere in the sample where the inter-valley motion
takes place. In this regime, unlike the Campbell regime,
the field penetration Λ increases linearly with h as [11],

Λ =
c

4π

h

J(T )
. (1)

It is important to note that the ac response χ is solely
determined by the penetration depth Λ of the ac excita-
tion. As a consequence, it is possible to find, in the criti-
cal state regime, a set of data at different T and h, such
that produce the same penetration Λ, and therefore the
same χ. For example, according to equation (1), if all data
in Figure 1 were in a well developed critical state regime,
curves measured at constant T should collapse on a single
one when, for each curve, the horizontal axis h is scaled
by a suitable factor J(T )−1. The resulting curve from this
procedure is the Bean penetration depth Λ(χ′) ≈ h/J(T ).
This scaling is shown in the main panel of Figure 3 for
temperatures ranging from 6 K to 7 K. We observe a good
overlap at low screening values (|χ′| < 0.7) and a break
down of the scaling when approaching to the Campbell
regime at higher χ′ values, where the field penetration
and therefore χ′, become h-independent.

The set of parameters J(T ) chosen to obtain the su-
perposition of the low screening data, determine the tem-
perature dependence of the persistent current as is shown
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by star symbols in the upper inset of Figure 3. Alterna-
tively, the persistent current J(T ) can be also obtained
from χ′′(h) curves measured at fixed T , by tracking the
position hmax(T ) of the maximum dissipation. Indeed, ex-
act calculations for the particular case of a disk show [11]
that χ′′ maximizes when Λ = δ and thus from equation (1)
we have that for each T , J(T ) ≈ hmax/δ. This is shown as
solid circles in the upper inset of Figure 3. A similar argu-
ment can be applied to obtain J(T ) from the temperature
at which the dissipation maximizes in χ′′(T ) curves [12].
The result of this procedure is shown by open squares in
the same inset.

For comparison, in the upper inset of Figure 3 we
also show J(T ) for a Pb plain film without antidots de-
posited simultaneously with the patterned film. The effi-
ciency ε(T ) = J(antidots)/J(plainfilm) of the antidots
as correlated pinning centers with respect to the random
intrinsic pinning of the reference film, is shown in the lower
inset of Figure 3. We observe that ε monotonically de-
creases as T decreases from Tc. This result is in agreement
with the experimental fact that commensurability effects
originated in the periodicity of the pinning array, progres-
sively fade out as intrinsic pinning becomes more relevant
at lower temperatures. The very high ε values observed
in this sample can be taken as a confidence test of the
quality of the grown films.

Let us now analyze the crossover from the nonlinear
intermediate regime to the critical state regime. Accord-
ing to the theory, in the simplest case of a cylinder in
a parallel field, the critical state regime arises when the
Campbell penetration depth λ(T ) becomes equal to the
Bean penetration Λ(T, h), i.e. when h ∼ J(T )λ(T ) [12].
In a previous work [2] we have determined for a similar
sample, that λ(t = 0.90) ∼ 250 nm and using the J(T )
from Figure 3, we obtain a crossover field hcs ∼ 40 G,
which turns out to be far above our experimental esti-
mation of hcs ∼ 1 G according to Figure 3. Recently,
Pasquini et al. [13] have pointed out that in the case of
transverse geometry, since the actual range of field pene-
tration does not coincide with the penetration depth, the
previous criterion should be modified. Assuming that the
range of field penetration in both regimes coincides when
|χ′| = 0.5, the authors show that the crossover should oc-
cur at hcs ∼ √

9δ/2Rλ(T )J(T ), where R is the radius of
a disk shaped sample. In our case, the geometric factor√

9δ/2R ∼ 0.007 shifts the crossover field down to hcs ∼
0.3 G. Although this crossover field is somewhat smaller
than the experimental value, we should note that whereas
this simplified model correctly accounts for the reduction
of the transition field hcs, it still involves a certain degree
of arbitrariness since different criteria lead to different ge-
ometric factors.

In fact, Figure 3 shows that the scaling derived from
the critical state becomes valid for |χ′| < 0.7 instead of
|χ′| = 0.5. From the penetration depth at this screening
value, Λcross ∼ 6 nm, and the obtained critical current
J(T ), we can estimate the onset of the critical state regime
hcs = ΛcrossJ(T ). This boundary is represented by solid
circles in the main panel of Figure 2. It is apparent in

Fig. 4. Screening χ′ as a function of the Bean penetration
depth Λ obtained by scaling the curves showed in the lower
inset. The solid line depicts the theoretical expectations ac-
cording to the Bean model. The lower inset shows the real
part of the ac response χ′ as a function of the amplitude h
for several H at T = 7 K (t = 0.97). The upper inset shows
the critical current as a function of field at t = 0.97, obtained
following the procedures explained in the text.

this figure that the transition between the linear and the
critical state regime is not a sharp crossover but instead,
a broad intermediate non linear regime lies in between.

There are two different sources that give rise to this
crossover regime. First, it appears as a natural conse-
quence of the anharmonicity of the pinning potential. Sec-
ond, due to the inhomogeneous current distribution, non-
linearities first appear at the border of the sample and
then, as h increases, the boundary separating inter- and
intra-valley vortex motion, moves towards the center of
the sample. This coexistence between linear and nonlin-
ear regime gives rise to a nonlinear response. An additional
effect that may further expand the intermediate regime is
the presence of disorder in the distribution and energy of
the pinning centers. However, as we pointed out above, in
the studied samples owing to the regular array of pinning
centers, the topological and energetic disorder is reduced
down to minimum levels and should not play a significant
role.

A similar scaling analysis can be performed to obtain
the field dependence of the critical current. To that end,
we have measured the ac susceptibility response of the
AD65 sample, as a function of h, for several applied dc
fields H at T = 7 K (t = 0.97). These curves are shown
in the lower inset of Figure 4 for fields ranging from 0 G
to 56 G. Strictly, equation (1) is valid within the Bean
critical state scenario, i.e. with a critical current Jc in-
dependent of H [14]. This shortcoming can be avoided
either by applying an ac drive much smaller than the dc
field, or provided that Jc is insensitive to the small field
oscillations.
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Fig. 5. Experimental curves χ′′(µ′) for the data points showed
in Figure 4. The solid line corresponds to the theoretical cal-
culation for a disk in the Bean critical state model. The inset
shows the asymptotic behavior of χ′ for large h together with
the linear fits from where the exponent ν is determined (see
text).

In the main panel of Figure 4 we show the results of a
scaling procedure similar to that previously explained to
obtain Λ(χ′). For |χ′| < 0.6, a fairly good overlap of all
data points is clearly observed. This result indicates that
in this field range, equation (1) is satisfied and therefore
the Bean model applies. The solid line depicts the theoret-
ical expectations according to the Bean model for a thin
disk [11]. It is worth to note that this is not a fitting curve
but a theoretical prediction where no free parameters are
involved.

The critical current J(H) derived from this scaling is
shown in the upper inset of Figure 4 together with the
values obtained from the position of the maximum dissi-
pation χ′′. We observe that J(H) exhibits barely defined
crossovers at H1 and H2 followed by more pronounced
transitions at higher matching fields. It is important to
note that, unlike the typical χ′(H) measurements where
several regimes are crossed while sweeping H , this scaling
procedure allows one to estimate quantitatively the value
of the critical current within a single dynamic regime.

Additional information on the dynamics in this regime
can be obtained by plotting χ′′ vs. µ′ = 1 + χ′ (Cole-Cole
plot), as shown in Figure 5 at t = 0.97 for several fields.
Since in this kind of graph only dimensionless variables
are considered, it results very suitable to analyze the
data [3,15,16]. In this figure, the solid line represents the
theoretical calculation of χ′′(µ′) for a disk shaped sample
in the Bean CS regime. For permeabilities |µ′| < 0.1 a
very small dissipation indicates the presence of a linear
regime. For higher |µ′| values, the similarity between the
experimental data and the theoretical curve strongly sug-
gest the applicability of a Bean-like model at high h. On
top of that we observe that the maximum of χ′′ is slightly
smaller than the theoretically predicted, and it shifts to-

wards µ′ → 1. These features indicate that flux creep is
not relevant in this case, consistently with the observed
weak f -dependence.

Further confirmation that data taken at large h is well
described by a Bean model can be obtained by analyz-
ing the asymptotic behavior of the real part of the ac
susceptibility χ′ at high h. Recently, Shantsev et al. [15]
have shown that according to the CS model, χ′ ∝ h−ν at
large h, where ν depends on the J(B) dependence. For ex-
ample, in a Bean critical state model, ν = −3/2, whereas
for the exponential and the Kim model, ν = −3. Accord-
ingly, we have found, for the whole field range studied,
that ν = −1.50± 0.15. Some of these curves are shown in
the inset of Figure 5.

As we noted above, the average curvature of the pin-
ning potential α obtained in the linear regime, together
with the persistent current J determined in the critical
state regime, provide us with complementary information
about the principal characteristics of the pinning land-
scape. Usually, J is related with α through αu ≈ JΦ0,
where u is the pinning range. In this equation, the first
term represent the restoring force due to the parabolic
pinning potential and the second term is the Lorentz force
exerted by the current J . We can use this expression in or-
der to estimate the pinning range u from the two indepen-
dently obtained parameters α and J . In particular, taking
the values α(t = 0.90) ≈ 5 × 103 G2 from reference [2],
and the current density J(t = 0.90) ≈ 5 × 105 A/cm2 for
that sample, we obtain a pinning range u ∼ 330 nm which
is consistent with the expected range u ∼ λ ≈ 400 nm.

Finally we would like to point out that alternative
models other than a critical state have been proposed for
this kind of systems. In particular, Cooley and Grishin [4]
have shown that in a one-dimensional system with a peri-
odic pinning array, a terraced flux profile should be es-
tablished. Similarly, later on Reichhardt et al. [17], by
means of molecular dynamic simulations, showed that in
a 2D system, magnetic flux penetrate in the sample form-
ing complex patterns like islands and striped domains.
Although clearly, further theoretical works for higher di-
mensions and considering realistic sample geometries are
needed, it is important to stress that the observed ac re-
sponse can be satisfactorily accounted for by a simple
Bean model without the necessity of invoking a multi-
domain model.

5 Conclusions

In summary, we have demonstrated that the Bean critical
state model accurately describes the scaling observed in
the ac susceptibility response and provides a reliable way
to determine the critical current of the system as a func-
tion of temperature and field. The information gathered
from different dynamic regimes allowed us to determine
the averaged pinning range of the periodic landscape and
estimate the boundary between the Campbell and the crit-
ical state regimes.
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